Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 195(1): 162, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36445503

RESUMEN

Coral reefs are declining globally as a result of multiple stressors, including land-based stressors, such as sedimentation and pollution, and those that are related to a changing climate, such as increases in ocean acidification. Degradation of US Caribbean coral reef biota has been associated with exposure to sewage effluent from wastewater treatment plants (WWTPs). The Puerto Rico Aqueduct and Sewer Authority (PRASA) maintains WWTPs on the north coast of Puerto Rico, which release effluent into the marine environment in the vicinity of coral reefs. Using data collected by PRASA surveys conducted from 1999 to 2013, we examined coral reef condition at survey sites to identify potential changes or differences in reefs with respect to their proximity to the WWTP effluent pipes (e.g., upstream, downstream). The proportion of coverage represented by all coral, sensitive taxa, and tolerant taxa were compared across sites located upstream and downstream of WWTP effluent pipes using multivariate approaches and analysis of variance. The proportion of healthy, sensitive coral species and invasive or tolerant coral species were not different at sites downstream of the WWTP effluent pipe compared to upstream. These results are caveated by the limited sampling design, highly variable communities across WWTP locations, and the sparsity or absence of well-developed coral reef communities at most stations. We evaluate the strengths and weaknesses of the survey design and provide recommendations for future coral reef surveys investigating potential impacts of WWTP effluent.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Puerto Rico , Concentración de Iones de Hidrógeno , Agua de Mar , Monitoreo del Ambiente , Océanos y Mares
2.
Front For Glob Change ; 4: 1-14, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35118374

RESUMEN

Mangroves sequester significant quantities of organic carbon (C) because of high rates of burial in the soil and storage in biomass. We estimated mangrove forest C storage and accumulation rates in aboveground and belowground components among five sites along an urbanization gradient in the San Juan Bay Estuary, Puerto Rico. Sites included the highly urbanized and clogged Caño Martin Peña in the western half of the estuary, a series of lagoons in the center of the estuary, and a tropical forest reserve (Piñones) in the easternmost part. Radiometrically dated cores were used to determine sediment accretion and soil C storage and burial rates. Measurements of tree dendrometers coupled with allometric equations were used to estimate aboveground biomass. Estuary-wide mangrove forest C storage and accumulation rates were estimated using interpolation methods and coastal vegetation cover data. In recent decades (1970-2016), the highly urbanized Martin Peña East (MPE) site with low flushing had the highest C storage and burial rates among sites. The MPE soil carbon burial rate was over twice as great as global estimates. Mangrove forest C burial rates in recent decades were significantly greater than historic decades (1930-1970) at Cañno Martin Peña and Piñones. Although MPE and Piñones had similarly low flushing, the landscape settings (clogged canal vs forest reserve) and urbanization (high vs low) were different. Apparently, not only urbanization, but site-specific flushing patterns, landscape setting, and soil fertility affected soil C storage and burial rates. There was no difference in C burial rates between historic and recent decades at the San José and La Torrecilla lagoons. Mangrove forests had soil C burial rates ranging from 88 g m-2 y-1 at the San José lagoon to 469 g m-2 y-1 at the MPE in recent decades. Watershed anthropogenic CO2 emissions (1.56 million Mg C y-1) far exceeded the annual mangrove forest C storage rates (aboveground biomass plus soils: 17,713 Mg C y-1). A combination of maintaining healthy mangrove forests and reducing anthropogenic emissions might be necessary to mitigate greenhouse gas emissions in urban, tropical areas.

3.
Front For Glob Change ; 4: 1-765896, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-35059638

RESUMEN

Tropical mangrove forests have been described as "coastal kidneys," promoting sediment deposition and filtering contaminants, including excess nutrients. Coastal areas throughout the world are experiencing increased human activities, resulting in altered geomorphology, hydrology, and nutrient inputs. To effectively manage and sustain coastal mangroves, it is important to understand nitrogen (N) storage and accumulation in systems where human activities are causing rapid changes in N inputs and cycling. We examined N storage and accumulation rates in recent (1970 - 2016) and historic (1930 - 1970) decades in the context of urbanization in the San Juan Bay Estuary (SJBE, Puerto Rico), using mangrove soil cores that were radiometrically dated. Local anthropogenic stressors can alter N storage rates in peri-urban mangrove systems either directly by increasing N soil fertility or indirectly by altering hydrology (e.g., dredging, filling, and canalization). Nitrogen accumulation rates were greater in recent decades than historic decades at Piñones Forest and Martin Peña East. Martin Peña East was characterized by high urbanization, and Piñones, by the least urbanization in the SJBE. The mangrove forest at Martin Peña East fringed a poorly drained canal and often received raw sewage inputs, with N accumulation rates ranging from 17.7 to 37.9 g -2 y-1 in recent decades. The Piñones Forest was isolated and had low flushing, possibly exacerbated by river damming, with N accumulation rates ranging from 18.6 to 24.2 g -2 y-1 in recent decades. Nearly all (96.3%) of the estuary-wide mangrove N (9.4 Mg ha-1) was stored in the soils with 7.1 Mg ha-1 sequestered during 1970-2017 (0-18 cm) and 2.3 Mg ha-1 during 1930-1970 (19-28 cm). Estuary-wide mangrove soil N accumulation rates were over twice as great in recent decades (0.18 ± 0.002 Mg ha-1y-1) than historically (0.08 ± 0.001 Mg ha-1y-1). Nitrogen accumulation rates in SJBE mangrove soils in recent times were twofold larger than the rate of human-consumed food N that is exported as wastewater (0.08 Mg ha-1 y-1), suggesting the potential for mangroves to sequester human-derived N. Conservation and effective management of mangrove forests and their surrounding watersheds in the Anthropocene are important for maintaining water quality in coastal communities throughout tropical regions.

4.
Mar Pollut Bull ; 159: 111387, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32827871

RESUMEN

Coral reef ecosystems are declining due to multiple interacting stressors. A bioassessment framework focused on stressor-response associations was developed to help organize and communicate complex ecological information to support coral reef conservation. This study applied the Biological Condition Gradient (BCG), initially developed for freshwater ecosystems, to fish assemblages of U.S. Caribbean coral reef ecosystems. The reef fish BCG describes how biological conditions changed incrementally along a gradient of increasing anthropogenic stress. Coupled with physical and chemical water quality data, the BGC forms a scientifically defensible basis to prioritize, protect and restore water bodies containing coral reefs. Through an iterative process, scientists from across the U.S. Caribbean used fishery-independent survey data and expert knowledge to develop quantitative decision rules to describe six levels of coral reef ecosystem condition. The resultant reef fish BCG provides an effective tool for identifying healthy and degraded coral reef ecosystems and has potential for global application.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Región del Caribe , Ecosistema , Peces , Indias Occidentales
5.
J Geophys Res Biogeosci ; 125(3)2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32426203

RESUMEN

Tropical urban estuaries are severely understudied. Little is known about the basic biogeochemical cycles and dominant ecosystem processes in these waterbodies, which are often low-lying and heavily modified. The San Juan Bay Estuary (SJBE) in San Juan, Puerto Rico is an example of such a system. Over the past 80 years, a portion of the estuary has filled in, changing the hydrodynamics and negatively affecting water quality. Here we sought to document these changes using ecological and biogeochemical measurements of surface sediments and bivalves. Measurements of sediment physical characteristics, organic matter content, and stable isotope ratios (δ13C, δ15N, δ34S) illustrated the effects of the closure of the Caño Martín Peña (CMP) on the hydrology and water quality of the enclosed and semienclosed parts of the estuary. The nitrogen stable isotope (δ15N) values were lowest in the CMP, the stretch of the SJBE that is characterized by waters with low dissolved oxygen and high fecal coliform concentrations. Despite this, the results of this study indicate that nitrogen (N) contributions from N-fixing, sulfate-reducing microbes may meet or even exceed contributions from urban runoff and sewage. While the importance of sulfate reducers in contributing N to mangrove ecosystems is well documented, this is the first indication that such processes could be dominant in an intensely urban system. It also underscores just how little we know about tropical coastal ecosystems in densely populated areas throughout the globe.

6.
Wetlands (Wilmington) ; 40(5): 1469-1480, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35783663

RESUMEN

Mangroves are known to sequester carbon at rates exceeding even those of other tropical forests; however, to understand carbon cycling in these systems, soil-atmosphere fluxes and gas exchanges in mangrove-adjacent shallow waters need to be quantified. Further, despite the ever-increasing impact of development on mangrove systems, there is even less data on how subtropical, greenhouse gas (GHG) fluxes are affected by urbanization. We quantified carbon dioxide (CO2) and methane (CH4) fluxes from mangrove soils and adjacent, coastal waters along a gradient of urbanization in the densely-populated, subtropical San Juan Bay Estuary (PR). Edaphic (salinity, pH, surface temperature) factors among sites significantly covaried with GHG fluxes. We found that mangrove systems in more highly-urbanized reaches of the estuary were characterized by relatively lower porewater salinities and substantially larger GHG emissions, particularly CH4, which has a high global warming potential. The magnitude of the CO2 emissions was similar in the mangrove soils and adjacent waters, but the CH4 emissions in the adjacent waters were an order of magnitude higher than in the soils and showed a marked response to urbanization. This study underscores the importance of considering GHG emissions of adjacent waters in carbon cycling dynamics in urbanized, tropical mangrove systems.

7.
Sensors (Basel) ; 18(12)2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30544516

RESUMEN

The U.S. Environmental Protection Agency (EPA) is involved in the discovery, evaluation, and application of low-cost air quality (AQ) sensors to support citizen scientists by directly engaging with them in the pursuit of community-based interests. The emergence of low-cost (<$2500) sensors have allowed a wide range of stakeholders to better understand local AQ conditions. Here we present results from the deployment of the EPA developed Citizen Science Air Monitor (CSAM) used to conduct approximately five months (October 2016⁻February 2017) of intensive AQ monitoring in an area of Puerto Rico (Tallaboa-Encarnación, Peñuelas) with little historical data on pollutant spatial variability. The CSAMs were constructed by combining low-cost particulate matter size fraction 2.5 micron (PM2.5) and nitrogen dioxide (NO2) sensors and distributed across eight locations with four collocated weather stations to measure local meteorological parameters. During this deployment 1 h average concentrations of PM2.5 and NO2 ranged between 0.3 to 33.6 µg/m³ and 1.3 to 50.6 ppb, respectively. Peak concentrations were observed for both PM2.5 and NO2 when conditions were dominated by coastal-originated winds. These results advanced the community's understanding of pollutant concentrations and trends while improving our understanding of the limitations and necessary procedures to properly interpret measurements produced by low-cost sensors.

8.
Geosciences (Basel) ; 8(2): 43, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29682336

RESUMEN

Arsenic (As) and lead (Pb) are two contaminants of concern associated with urban gardening. In Puerto Rico, data currently is limited on As and Pb levels in urban garden soils, soil metal (loid) bioaccessibility, and uptake of As and Pb in soil by edible plants grown in the region. This study examined total and bioaccessible soil As and Pb concentrations and accumulation in 10 commonly grown garden plants collected from three urban community gardens in Puerto Rico. Bioavailability values were predicted using bioaccessibility data to compare site-specific bioavailability estimates to commonly used default exposure assumptions. Total and bioaccessible As levels in study soils ranged from 2 to 55 mg/kg and 1 to 18 mg/kg, respectively. Total and bioaccessible Pb levels ranged from 19 to 172 mg/kg and 17 to 97 mg/kg, respectively. Measured bioaccessibility values corresponded to 19 to 42% bioaccessible As and 61 to 100% bioaccessible Pb when expressed as a percent of total As and Pb respectively. Predicted relative percent bioavailability of soil As and Pb based on measured bioaccessibility values ranged from 18 to 36% and 51 to 85% for As and Pb respectively. Transfer factors (TFs) measuring uptake of As in plants from soil ranged from 0 to 0.073 in the edible flesh (fruit or vegetable) of plant tissues analyzed and 0.073 to 0.444 in edible leaves. Pb TFs ranged from 0.002 to 0.012 in flesh and 0.023 to 0.204 in leaves. Consistent with TF values, leaves accumulated higher concentrations of As and Pb than the flesh, with the highest tissue concentrations observed in the culantro leaf (3.2 mg/kg dw of As and 8.9 mg/kg dw of Pb). Leaves showed a general but not statistically-significant (α = 0.05) trend of increased As and Pb concentration with increased soil levels, while no trend was observed for flesh tissues. These findings provide critical data that can improve accuracy and reduce uncertainty when conducting site-specific risk determination of potential As and Pb exposure while gardening or consuming garden produce in the understudied region of Puerto Rico.

9.
Appl Environ Microbiol ; 79(5): 1689-96, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23291547

RESUMEN

A study was conducted to determine the primary sources of fecal pollution in a subtropical watershed using host-specific assays developed in temperate regions. Water samples (n = 534) from 10 different sites along the Rio Grande de Arecibo (RGA) watershed were collected mostly on a weekly basis (54 sampling events) during 13 months. DNA extracts from water samples were used in PCR assays to determine the occurrence of fecal bacteria (Bacteroidales, Clostridium coccoides, and enterococci) and human-, cattle-, swine-, and chicken-specific fecal sources. Feces from 12 different animals (n = 340) and wastewater treatment samples (n = 16) were analyzed to determine the specificity and distribution of host-specific assays. The human-specific assay (HF183) was found to be highly specific, as it did not cross-react with nontarget samples. The cattle marker (CF128) cross-reacted to some extent with swine, chicken, and turkeys and was present in 64% of the cattle samples tested. The swine assays showed poor host specificity, while the three chicken assays showed poor host distribution. Differences in the detection of host-specific markers were noted per site. While human and cattle assays showed moderate average detection rates throughout the watershed, areas impacted by wastewater treatment plants and cattle exhibited the highest prevalence of these markers. When conditional probability for positive signals was determined for each of the markers, the results indicated higher confidence levels for the human assay and lower levels for all the other assays. Overall, the results from this study suggest that additional assays are needed, particularly to track cattle, chicken, and swine fecal pollution sources in the RGA watershed. The results also suggest that the geographic stability of genetic markers needs to be determined prior to conducting applied source tracking studies in tropical settings.


Asunto(s)
Heces/microbiología , Metagenoma , Contaminación del Agua , Animales , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Humanos , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...